

DBJ-003-2015025 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

June - 2022

Physics - 501

(Mathematical Physics, Classical Mechanics & Quantum Mechanics)

(New Course)

Faculty Code: 003

Subject Code: 2015025

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

(1) Attempt any five questions.

(2) Symbols have their usual meanings.

(3) Figures to the right indicate marks.

Physical Constants:

 $h = 6.62 \times 10^{-34} Js$, $\hbar = 1.055 \times 10^{-34} Js$, Mass of an electron = $9.1 \times 10^{-31} kg$

- 1 (a) Answer the following objective questions:
 - (1) In the interval -l to +l the Fourier coefficient

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$$
. True or false ?

- (2) Write the complex form of Fourier series.
- (3) The function $f(x) = x^2$ is an odd function. True or false?
- (4) $\int_{-\pi}^{+\pi} \sin mx \sin nx = \pi$, when m =______

- (b) Answer the question :
 - 1. Expand $f(x) = x, -\pi < x < \pi$.
- (c) Answer the question :

based

2

3

- 1. Explain the action of a half wave rectifier based on Fourier analysis.
- (d) Answer the question in detail:
 - 1. What is Fourier series? Derive Fourier coefficients.
- 2 (a) Answer the following objective questions:
 - 1. Fourier series can be used for the analysis of pure direct current. True or false ?
 - 2. If f(x) is an even function then $f(x)\sin x$ is _____
 - 3. $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ True or false ?
 - $4. \int_{-\pi}^{+\pi} \cos mx \sin nx = \dots$
 - (b) Answer the question:
 - 1. Expand

$$f(x) = 0, -\pi < x < 0$$

= 1,0 < x < \pi

(c) Answer the question:

3

- 1. Explain the analysis of a triangular wave using Fourier series.
- (d) Answer the question in detail:

5

1. Explain Fourier transform including Fourier cosine transform and Fourier sine transform.

3	(a)	Answer the following objective questions:	4
		1. Write D'Alembert's principle.	
		2. Write the types of time dependent constraint.	
		3. Write Lagrange's equation of motion.	
		4. The product of $Q_j \delta q_j$ has the dimension of	
	(b)	Answer the question :	2
		1. Obtain Lagrange's equation of motion for the system	
		having kinetic energy and potential energy, $T = \frac{1}{2}my^2$	
		and $V = \frac{1}{2}n\omega^2 y^2$.	
	(c)	Answer the question :	3
	` /	1. Explain D' Alembert's principle.	
	(d)	Answer the question in detail :	5
	(u)	1. Deduce Newton's second law from D' Alembert's	3
		principle.	
4	(a)	Answer the following objective questions:	4
		1. Define constraints.	
		2. What is degree of freedom?	
		3. Define Hamilton's variational principle.	
		4. Write Euler-Lagrangian differential function.	
	(b)	Answer the question :	2
		1. Lagrangian of a compound pendulum is $\frac{1}{2}I\dot{\theta}^2 + mgl\cos\theta$,	
		then what will be its kinetic energy and potential energy?	
	(c)	Answer the question :	3
	· /	1. Explain virtual work.	
	(1)		_
	(d)	Answer the question in detail:	5
		1. Deduce Lagrange's equation from D' Alembert's principle.	

- 5 (a) Answer the following objective questions:
- 4

- 1. Define phase space.
- 2. Write Hamilton's modified principle.
- 3. In Hamiltonian formulation n-position coordinates and n-momentum coordinates are considered as independent variables. True or false ?
- 4. If $\frac{\partial L}{\partial q_j} = 0$, then q_j is considered as _____.
- (b) Answer the question:

2

1. Obtain Hamilton's canonical equations of motion for a system, whose Hamiltonian is given as

$$H(x,p_x) = \frac{p_x^2}{2m} + \frac{1}{2}kx^2$$
.

(c) Answer the question:

3

- 1. Explain the advantages of Hamiltonian approach.
- (d) Answer the question in detail:

5

- 1. Obtain Hamilton's canonical equations of motion.
- 6 (a) Answer the following objective questions:

4

1. Write Hamilton's canonical equations of motion.

2. If
$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}k(x^2 + y^2)$$
 then $\frac{\partial L}{\partial \dot{x}} = ?$

- 3. In a conservative system, the potential energy is only _____ dependent.
- 4. The 2n-dimensional space having n-position coordinates and n-momentum coordinates is known as ______space.

4

(b)	Answer the question :		2
	1.	Lagrangian of a system is given by	
		$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}k(x^2 + y^2).$	
		Calculate \dot{p}_x and \dot{p}_y .	
(c)	Answer the question :		3
	1.	Explain generalized velocity and generalized momentum.	
(d)	Answer the question in detail :		5
	1.	Obtain Hamilton's canonical equations of motion from Hamilton's variational principle.	
(a)	Answer the following objective questions :		4
	1.	The expectation value of momentum is defined as	
		$\langle P \rangle = \int \psi * P \Psi d\tau$. True or false ?	
	2.	$\int \psi ^2 d\tau = N^2, N^2 \text{ is known as } \underline{\hspace{1cm}}$	
	3.	The minimum frequency of radiation required for photoelectric emission is known as	
	4.	What is photoelectric effect ?	
(b)	Δno	wer the question:	2

1. Normalize wave function $\psi(x) = Ae^{ikx}$ over the region -a < x < a.

- (c) Answer the question:
 - 1. Explain box normalization.
- (d) Answer the question in detail :

1. Derive the one dimensional Schrodinger equation and extend it to three dimensions.

7

3

5

8	(a)	Answer the following objective questions:	4
		1. The wavelength associated with a moving particle of momentum p is given by $\lambda = $	
		2. Write the three dimensional operator correspondence of momentum.	
		3. What is Compton effect ?	
		4. For the conservation of probability $\frac{\partial}{\partial t} \int \psi ^2 d^3x =$	
	(b)	Answer the question :	2
		1. If $\psi' = ae^{i(kx-\omega t)}$; $-1 < x < 1$, obtain the normalized wave function.	
	(c)	Answer the question: 1. Obtain the time independent Schrodinger equation.	3
	(d)	Answer the question in detail : 1. Describe a square well potential and explain bound state $(E < 0)$.	5
9	(a)	Answer the following objective questions:	4
		$1. [x, P_x] = \underline{\qquad}.$	
		2. What is a self adjoint operator?	
		3. If A and B are adjoint operators then $(A+B)^{\dagger} = A^{\dagger} - B^{\dagger}$. True or false ?	
		4. In quantum mechanics each dynamical variable is represented by a linear operator. True or false ?	
	(b)	Answer the question :	2
		1. Prove that momentum operator is self adjoint.	
	(c)	Answer the question : 1. Write a note on Dirac Delta function.	3
	(d)	Answer the question in detail :	5
	(u)	1. State and explain the fundamental postulates of wave	3

mechanics.

10 (a) Answer the following objective questions:

$$1. \quad [L_x, L_y] = \underline{\qquad}.$$

- 2. The ground state energy of a harmonic oscillator =
- 3. $(A^{\dagger})^{\dagger} =$ _____.
- 4. If $\delta(x-x')$ is the Dirac delta function then, $\int_{-\infty}^{+\infty} \delta(x-x') dx = \underline{\qquad}.$

(b) Answer the question:

- 1. Show that the expectation value of a self adjoint operator is real.
- (c) Answer the question:
 - 1. Obtain the Schrodinger equation for a simple harmonic oscillator.
- (d) Answer the question in detail:
 - 1. Explain angular momentum operator. Derive the expressions for L_x, L_y and L_z and hence obtain the

relation
$$L^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right].$$